Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.268
Filter
1.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656670

ABSTRACT

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Subject(s)
Animal Feed , Lactation , Methane , Milk , Animals , Cattle/physiology , Methane/analysis , Methane/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Animal Feed/analysis , Diet/veterinary , Animal Husbandry/methods , Silage/analysis , Animal Nutritional Physiological Phenomena , Brachiaria , Nitrogen/metabolism , Nitrogen/analysis , Nutrients/analysis , Nutrients/metabolism , Fabaceae/chemistry
2.
Environ Sci Technol ; 58(15): 6575-6585, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564483

ABSTRACT

Wide-area aerial methods provide comprehensive screening of methane emissions from oil and gas (O & G) facilities in production basins. Emission detections ("plumes") from these studies are also frequently scaled to the basin level, but little is known regarding the uncertainties during scaling. This study analyzed an aircraft field study in the Denver-Julesburg basin to quantify how often plumes identified maintenance events, using a geospatial inventory of 12,629 O & G facilities. Study partners (7 midstream and production operators) provided the timing and location of 5910 maintenance events during the 6 week study period. Results indicated three substantial uncertainties with potential bias that were unaddressed in prior studies. First, plumes often detect maintenance events, which are large, short-duration, and poorly estimated by aircraft methods: 9.2 to 46% (38 to 52%) of plumes on production were likely known maintenance events. Second, plumes on midstream facilities were both infrequent and unpredictable, calling into question whether these estimates were representative of midstream emissions. Finally, 4 plumes attributed to O & G (19% of emissions detected by aircraft) were not aligned with any O & G location, indicating that the emissions had drifted downwind of some source. It is unclear how accurately aircraft methods estimate this type of plume; in this study, it had material impact on emission estimates. While aircraft surveys remain a powerful tool for identifying methane emissions on O & G facilities, this study indicates that additional data inputs, e.g., detailed GIS data, a more nuanced analysis of emission persistence and frequency, and improved sampling strategies are required to accurately scale plume estimates to basin emissions.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Aircraft , Methane/analysis , Natural Gas/analysis
3.
Sci Total Environ ; 926: 172133, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569960

ABSTRACT

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Subject(s)
Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Oryza/metabolism , Agriculture/methods , Global Warming , Crop Production , Nitrous Oxide/analysis , Methane/analysis , Soil , China
4.
Sci Total Environ ; 927: 171994, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38561130

ABSTRACT

Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.


Subject(s)
Forests , Global Warming , Methane , Soil Microbiology , Soil , Methane/metabolism , Methane/analysis , Soil/chemistry , Water , Temperature
5.
Ying Yong Sheng Tai Xue Bao ; 35(3): 678-686, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646755

ABSTRACT

Exploring the effects of ant nests on soil CH4 emissions in the secondary tropical forests is of great scientific significance to understand the contribution of soil faunal activities to greenhouse gas emissions. With static chamber-gas chromatography method, we measured the dry-wet seasonal dynamics of CH4 emissions from ant nests and control soils in the secondary forest of Syzygium oblatum communities in Xishuangbanna. We also examined the linkages of ant-mediated changes in functional microbial diversity and soil physicochemical properties with CH4 emissions. The results showed that: 1) Ant nests significantly accelerated soil CH4 emissions, with average CH4 emissions in the ant nests being 2.6-fold of that in the control soils. 2) The CH4 emissions had significant dry-wet seasonal variations, which was a carbon sink in the dry seasons (from -0.29±0.03 to -0.53±0.02 µg·m-2·h-1) and a carbon source in the wet seasons (from 0.098±0.02 to 0.041±0.009 µg·m-2·h-1). The CH4 emissions were significantly higher in ant nests than in control soils. The CH4 emissions from the ant nests had smaller dry-wet seasonal variation (from -0.38±0.01 to 0.12±0.02 µg·m-2·h-1) than those in the control soils (from -0.65±0.04 to 0.058±0.006 µg·m-2·h-1). 3) Ant nests significantly increased the values (6.2%-37.8%) of soil methanogen diversity (i.e., Ace and Shannon indices), temperature and humidity, carbon pools (i.e., total, easily oxidizable, and microbial carbon), and nitrogen pools (i.e., total, hydrolyzed, ammonium, and microbial biomass nitrogen), but decreased the diversity (i.e., Ace and Chao1 indices) of methane-oxidizing bacteria by 21.9%-23.8%. 4) Results of the structural equation modeling showed that CH4 emissions were promoted by soil methanogen diversity, temperature and humidity, and C and N pools, but inhibited by soil methane-oxidizing bacterial diversity. The explained extents of soil temperature, humidity, carbon pool, nitrogen pool, methanogen diversity, and methane-oxidizing bacterial diversity for the CH4 emission changes were 6.9%, 21.6%, 18.4%, 15.2%, 14.0%, and 10.8%, respectively. Therefore, ant nests regulated soil CH4 emission dynamics through altering soil functional bacterial diversities, micro-habitat, and carbon and nitrogen pools in the secondary tropical forests.


Subject(s)
Ants , Forests , Methane , Soil , Tropical Climate , Methane/analysis , Methane/metabolism , Animals , Soil/chemistry , China , Soil Microbiology , Seasons
6.
Sci Rep ; 14(1): 8706, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622195

ABSTRACT

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Subject(s)
Charcoal , Greenhouse Gases , Oryza , Soil/chemistry , Global Warming , Agriculture/methods , Greenhouse Gases/analysis , Oryza/chemistry , Methane/analysis , Carbon , Nitrous Oxide/analysis
7.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583627

ABSTRACT

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Subject(s)
Methane , Nitrous Oxide , Peroxides , Water Quality , Methane/analysis , Nitrous Oxide/analysis , Peroxides/analysis , Water Pollutants, Chemical/analysis , Greenhouse Gases/analysis
8.
J Environ Manage ; 357: 120736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574706

ABSTRACT

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Biofuels/analysis , Sanitation , Soil/chemistry , Methane/analysis , Nitrous Oxide/metabolism , Greenhouse Effect
9.
J Environ Manage ; 357: 120828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579473

ABSTRACT

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Subject(s)
Bioreactors , Water , Humans , Animals , Swine , Anaerobiosis , Water/analysis , Feces , Digestion , Methane/analysis
10.
PLoS One ; 19(4): e0297784, 2024.
Article in English | MEDLINE | ID: mdl-38603686

ABSTRACT

Based on the integrated model of Super-SBM model, spatial Durbin model (SDM) and Grey neural network model, this paper analyzes the panel data of various provinces in China from multiple angles and dimensions. It was found that there were significant differences in eco-efficiency between organic rice production and conventional rice production. The response of organic rice to climate change, the spatial distribution of ecological and economic benefits and the impact on carbon emission were analyzed. The results showed that organic rice planting not only had higher economic benefits, but also showed a rising trend of ecological benefits and a positive feedback effect. This finding highlights the importance of organic rice farming in reducing carbon emissions. Organic rice farming effectively reduces greenhouse gas emissions, especially carbon dioxide and methane, by improving soil management and reducing the use of fertilizers and pesticides. This has important implications for mitigating climate change and promoting soil health and biodiversity. With the acceleration of urbanization, the increase of organic rice planting area shows the trend of organic rice gradually replacing traditional rice cultivation, further highlighting the potential of organic agriculture in emission reduction, environmental protection and sustainable agricultural production. To this end, it is recommended that the Government implement a diversified support strategy to encourage technological innovation, provide guidance and training, and raise public awareness and demand for organic products. At the same time, private sector participation is stimulated to support the development of organic rice cultivation through a public-private partnership model. Through these measures, further promote organic rice cultivation, achieve the dual goals of economic benefits and environmental benefits, and effectively promote the realization of double carbon emission reduction targets.


Subject(s)
Greenhouse Gases , Oryza , Agriculture/methods , Soil , Organic Agriculture , China , Methane/analysis , Fertilizers
11.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569319

ABSTRACT

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Subject(s)
Fabaceae , Greenhouse Gases , Vegetables/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Nitrates , Carbon , Soil , Methane/analysis , Nitrogen/metabolism , Carbon Dioxide/analysis , Agriculture
12.
Huan Jing Ke Xue ; 45(2): 929-939, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471931

ABSTRACT

The effects of biochar application on soil nitrous oxide (N2O) and methane (CH4) emissions in a typical rice-vegetable rotation system in Hainan after two years were investigated. The aim was to clarify the long-term effects of biochar on greenhouse gas emissions under this model, and it provided a theoretical basis for N2O and CH4 emission reduction in rice-vegetable rotation systems in tropical regions of China. Four treatments were set up in the field experiment, including no nitrogen fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizer (CON); nitrogen, phosphorus, and potassium fertilizer combined with 20 t·hm-2 biochar (B1); and nitrogen, phosphorus, and potassium fertilizer combined with 40 t·hm-2 biochar (B2). The results showed that: ① compared with that in the CON treatment, the B1 and B2 treatments significantly reduced N2O emissions by 32% and 54% in the early rice season (P < 0.05, the same below), but the B1 and B2 treatments significantly increased N2O emissions by 31% and 81% in the late rice season. The cumulative emissions of N2O in the pepper season were significantly higher than those in the early and late rice seasons, and the B1 treatment significantly reduced N2O emissions by 35%. There was no significant difference between the B2 and CON treatments. ② Compared with that in the CON treatment, B1 and B2 significantly reduced CH4 emissions by 63% and 65% in the early rice season, and the B2 treatment significantly increased CH4 emissions by 41% in the late rice season. There was no significant difference between the B1 and CON treatments. There was no significant difference in cumulative CH4 emissions between treatments in the pepper season. ③ The late rice season contributed to the main global warming potential (GWP) of the rice-vegetable rotation system, and CH4 emissions determined the magnitude of GWP and greenhouse gas emission intensity (GHGI). After two years of biochar application, B1 reduced the GHGI of the whole rice-vegetable rotation system, and B2 increased the GHGI and reached a significant level. However, the B1 and B2 treatments significantly reduced GHGI in the early rice season and pepper season, and only the B2 treatment increased GHGI in the late rice season. ④ Compared with that in the CON treatment, the B1 and B2 treatments significantly increased the yield of early rice by 33% and 51%, and the B1 and B2 treatments significantly increased the yield of pepper season by 53% and 81%. In the late rice season, there was no significant difference in yield except for in the CK treatment without nitrogen fertilizer. The results showed that the magnitude of greenhouse gas emissions in the tropical rice-vegetable rotation system was mainly determined by CH4 emissions in the late rice season. After two years of biochar application, only low biochar combined with nitrogen fertilizer had a significant emission reduction effect, but high and low biochar combined with nitrogen fertilizer increased the yield of early rice and pepper crops continuously.


Subject(s)
Charcoal , Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Agriculture/methods , Fertilizers/analysis , Soil , Nitrogen , China , Methane/analysis , Nitrous Oxide/analysis , Phosphorus , Vegetables , Potassium
13.
Environ Sci Pollut Res Int ; 31(17): 25287-25298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468001

ABSTRACT

Ionizing irradiation, as a new pretreatment method for the anaerobic fermentation of organic pollutants, is featured with fast reaction speed, good treatment effect, no need to add any chemical reagents, and no secondary pollution. This study explores the mechanism of improving anaerobic fermentation performance of rice samples pretreated by cobalt-60 gamma irradiation through the influence on fermentation substrate, acidogenic phase and methanogenic phase. The results reveal that the soluble chemical oxygen demand of the irradiated rice sample at an absorbed dose of 9.6 kGy increases by 12.4 times due to the dissolution of small molecules of fat-soluble organic matter. The yield of biogas in the acidogenic phase increases by 22.2% with a slight increase in hydrogen gas content. The yield of biogas and methane gas content in the methanogenic phase increases by 27.3% and 15%, respectively. Microbial genome analysis, performed with MiSeq high-throughput sequencing and metagenomic methods, suggests the microbial abundance and metabolic functions in the anaerobic fermentation process change significantly as a result of the pretreatment by gamma irradiation.


Subject(s)
Oryza , Fermentation , Anaerobiosis , Oryza/metabolism , Biofuels/analysis , Acids , Methane/analysis , Bioreactors , Sewage
14.
Environ Pollut ; 348: 123807, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522606

ABSTRACT

This article contributes to the scant literature exploring the determinants of methane emissions. A lot is explored considering CO2 emissions, but fewer studies concentrate on the other most long-lived greenhouse gas (GHG), methane which contributes largely to climate change. For the empirical analysis, a large dataset is used considering 192 countries with data ranging from 1960 up to 2022 and considering a wide set of determinants (total central government debt, domestic credit to the private sector, exports of goods and services, GDP per capita, total unemployment, renewable energy consumption, urban population, Gini Index, and Voice and Accountability). Panel Quantile Regression (PQR) estimates show a non-negligible statistical effect of all the selected variables (except for the Gini Index) over the distribution's quantiles. Moreover, the Simple Regression Tree (SRT) model allows us to observe that the losing countries, located in the poorest world regions, abundant in natural resources, are those expected to curb methane emissions. For that, public interventions like digitalization, green education, green financing, ensuring the increase in Voice and Accountability, and green jobs, would lead losers to be positioned in the winner's rankings and would ensure an effective fight against climate change.


Subject(s)
Greenhouse Gases , Methane , Methane/analysis , Climate Change , Carbon Dioxide/analysis
15.
Waste Manag ; 180: 1-8, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38493518

ABSTRACT

The feasibility of anaerobic co-digestion in semicontinuous mode of two major urban biowaste, food waste (FW) and garden and park waste (GPW) (75 % FW and 25 % GPW) as well as the co-digestion of FW with the process water originated from the hydrothermal carbonization of GPW (95 % FW and 5 % process water), both on a COD basis, has been assessed. The effect of varying organic loading rate (OLR) from 1.5 to 3.5 g COD/L·d on methane yield, gross energy recovery, and microbiome population was evaluated. For comparison, anaerobic digestion of FW was also conducted to determine the best strategy for sustainable biowaste management. This study showed an optimal OLR of 2.5 g COD/L·d. Acetic and propionic acid content increased as OLR raised for each condition studied, while methane yield decreased at the highest OLR tested indicating overloading of the system. The anaerobic co-digestion of FW and process water showed a 10 % increase on methane production compared to anaerobic digestion of FW (324 vs. 294 mL CH4 STP/L·d). Moreover, it enhances the process due to a greater abundance and diversity of hydrolytic and acidogenic bacteria belonging to Bacterioidota, Firmicutes, and Chloroflexi phyla, as well as promotes the hydrogenotrophic pathway under higher propionic concentrations which is not usually favoured for methane production. The integration of hydrothermal carbonization of GPW with the anaerobic co-digestion of 95 % FW and 5 % of process water results in the highest potential energy recovery and could be a good strategy for sustainable management of urban biowaste.


Subject(s)
Food , Refuse Disposal , Anaerobiosis , Bioreactors , 60659 , Methane/analysis , Digestion , Water
16.
Waste Manag ; 180: 47-54, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38507836

ABSTRACT

Accurate quantification of methane emissions from landfills is crucial for improving greenhouse gas inventories and mitigating climate change impacts. Existing methodologies, such as theoretical gas production models and labour-intensive measurement approaches, present limitations including large uncertainties and high operational costs. This study adds to a growing body of research and applications which aim to bridge this gap. To this end, we present a case study using Unmanned Aerial Vehicles (UAVs) equipped with methane and wind instrumentation for a survey of a landfill site in Bury, Manchester, UK, in summer 2022, in order to evaluate and reflect the challenges of the UAV-based mass balance method for quantification of methane emissions from a large heterogeneous source such as landfill. This study offers guidance on defining an appropriate methane background concentration, geospatial interpolation of sampled date, survey sampling strategy, and more importantly, addresses the challenges surrounding UAV wind measurements and spatial characterisation of emission plumes. For the period of the case study, we quantified methane flux for the landfill site to be 150.7 kg h-1 with a 1 standard deviation uncertainty range of 83.0 kg h-1 to 209.5 kg h-1.


Subject(s)
Air Pollutants , Refuse Disposal , Air Pollutants/analysis , Methane/analysis , Refuse Disposal/methods , Environmental Monitoring/methods , Waste Disposal Facilities , United Kingdom
17.
J Environ Manage ; 356: 120588, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518497

ABSTRACT

In the agricultural sector, ruminants are the largest methane (CH4) emission source and many efforts have been undertaken to reduce these greenhouse gas emissions, while compromising animal health and physiology. On the other hand, ruminal CH4, which is biomethane, is in high demand, especially in its liquid form (LBM) that can be used as high energy density fuel. However, CH4 released from a ruminant is immediately mixed with air and highly diluted (<0.1%), challenging CH4 capture technologies. Here we aimed to construct a cryogenic pilot system to capture and liquefy enteric CH4 released from dairy cows kept in respiration chambers. To approach this aim, the outlet air from the chambers was directed through a two-step cooling trap to capture CO2 (-120 to -130 °C) as a solid in the first and CH4 and O2 as liquids in the second cooler (-160 to -180 °C). Warming the second cooler resulted in the evaporation of O2, thereby separating O2 and CH4. LBM purity was in average 90% and was lowest at warming rates higher than 0.88 °C/min. The mean CH4 capture efficiency was 92% and found to be independent of sequestration time and flow rate. However, an increase in CH4 concentration to 0.6%, as it occurs directly at the muzzle of a cow, reduced the sequestration time for CH4. These results show that cryogenic technology can be used to obtain LBM from the air containing ultra-low CH4 concentrations as it is found in cattle barns with high efficiency and purity.


Subject(s)
Methane , Milk , Female , Cattle , Animals , Milk/chemistry , Pilot Projects , Methane/analysis , Ruminants , Agriculture , Diet/veterinary , Lactation
18.
J Environ Manage ; 356: 120679, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531141

ABSTRACT

Introduction of alpine grasses to low altitude regions has long been a crucial strategy for enriching germplasm diversity, cultivating and acclimating high-quality species, enhancing ecosystem resilience and adaptability, as well as facilitating ecosystem restoration. However, there is an urgent need to investigate the impacts of planting Gramineae seeds on greenhouse gas (GHG) emissions, particularly during the critical stage of early plant growth. In this study, four species of grass seeds (Stipa breviflora, Poa pratensis, Achnatherum splendens, Elymus nutans) were collected from 19 high-altitude regions surrounding the Qinghai-Tibet Plateau and sown at low-altitude. Measurements of GHG emissions at early seedling growth in the mesocosm experiment using static chamber method showed a strong increase in the cumulative emissions of CO2 (5.71%-9.19%) and N2O (11.36%-13.64%) (p < 0.05), as well as an elevated CH4 uptake (2.75%-5.50%) in sites where the four grass species were introduced, compared to bare soil. Consequently, there was a substantial rise in global warming potential (13.87%-16.33%) (p < 0.05) at grass-introduced sites. Redundancy analysis showed that seed traits, plant biomass, and seedling emergence percentage were the main driving biotic factors of three GHGs fluxes. Our study unveils the potential risk of escalating GHG emissions induced by introducing high altitude grasses to low altitude bare soil, elucidating the mechanism through linking seed traits with seedling establishment and environmental feedback. Furthermore, this offers a new perspective for assessing the impact of grass introduction on ecological environment of introduced site.


Subject(s)
Global Warming , Greenhouse Gases , Ecosystem , Seedlings/chemistry , Poaceae , Altitude , Soil , Methane/analysis , Nitrous Oxide/analysis , Carbon Dioxide/analysis
19.
J Environ Manage ; 356: 120718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537467

ABSTRACT

Global climate change is predicted to increase exogenous N input into terrestrial ecosystems, leading to significant changes in soil C-cycling. However, it remains largely unknown how these changes affect soil C-cycling, especially in semi-arid grasslands, which are one of the most vulnerable ecosystems. Here, based on a 3-year field study involving N additions (0, 25, 50, and 100 kg ha-1 yr-1 of urea) in a semi-arid grassland on the Loess Plateau, we investigated the impact of urea fertilization on plant characteristics, soil properties, CO2 and CH4 emissions, and microbial C cycling genes. The compositions of genes involved in C cycling, including C fixation, degradation, methanogenesis, and methane oxidation, were determined using metagenomics analysis. We found that N enrichment increased both above- and belowground biomasses and soil organic C content, but this positive effect was weakened when excessive N was input (N100). N enrichment also altered the C-cycling processes by modifying C-cycle-related genes, specifically stimulating the Calvin cycle C-fixation process, which led to an increase in the relative abundance of cbbS, prkB, and cbbL genes. However, it had no significant effect on the Reductive citrate cycle and 3-hydroxypropionate bi-cycle. N enrichment led to higher soil CO2 and CH4 emissions compared to treatments without added N. This increase showed significant correlations with C degradation genes (bglA, per, and lpo), methanogenesis genes (mch, ftr, and mcr), methane oxidation genes (pmoA, pmoB, and pmoC), and the abundance of microbial taxa harboring these genes. Microbial C-cycling genes were primarily influenced by N-induced changes in soil properties. Specifically, reduced soil pH largely explained the alterations in methane metabolism, while elevated available N levels were mainly responsible for the shift in C fixation and C degradation genes. Our results suggest that soil N enrichment enhances microbial C-cycling processes and soil CO2 and CH4 emissions in semi-arid ecosystems, which contributes to more accurate predictions of ecosystem C-cycling under future climate change.


Subject(s)
Ecosystem , Grassland , Carbon Dioxide/analysis , Soil/chemistry , Methane/analysis , Fertilization
20.
J Environ Manage ; 356: 120578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547826

ABSTRACT

Domestic organic waste resources have increased over the past decade and treatment of this waste via co-digested biogasification facilities is increasing annually. However, inspection standards for such facilities are not well-established. Herein, we aimed to derive calculation formulas and factors related to organic matter decomposition efficiency and methane production rate in accordance with waste treatment facility inspection standards. We also aimed to determine the optimum waste mixing ratio. Sample (field) surveys of 18 treatment facilities and complete enumeration of 110 facilities were conducted. Calculation formulas and factors were derived using the survey data and biochemical methane potential (BMP) test. The calculated coefficients derived through the BMP test were 0.512 m3 CH4/kgVSin for food waste, 0.601 m3 CH4/kgVSin for livestock manure, and 0.382 m3 CH4/kgVSin for sewage sludge. The final derived calculation factors were 65.0% for food waste, 36.0% for livestock manure, and 20.0% for sewage sludge for organic matter decomposition efficiency, and 0.380 m3 CH4/kgVSin for food waste, 0.27 m3 CH4/kgVSin for livestock manure, and 0.140 m3 CH4/kgVSin for sewage sludge for methane production rates. The derived effective capacity calculation factors can be utilized in future waste treatment facility inspection methods by aiding in the establishment of appropriate inspection standards for co-digested biogasification facilities other than single food waste treatment facilities. In addition, the optimum mixing ratio can be used as design data for co-digested biogasification facilities.


Subject(s)
Refuse Disposal , Sewage , Sewage/chemistry , Anaerobiosis , Food , Manure/analysis , Bioreactors , 60659 , Methane/analysis , Digestion , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...